P1O-DA16/DA8/DA4

User’s Manual

Warranty

All products manufactured by ICP DAS are warranted
against defective materials for a period of one year from the
date of delivery to the original purchaser.

Warning

ICP DAS assume no liability for damages consequent to
the use of this product. ICP DAS reserves the right to change
this manual at any time without notice. The information
furnished by ICP DAS is believed to be accurate and reliable.
However, no responsibility is assumed by ICP DAS for its use,
nor for any infringements of patents or other rights of third
parties resulting from its use.

Copyright
Copyright 1999 by ICP DAS. All rights are reserved.

Trademark
The names used for identification only may be registered
trademarks of their respective companies.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 1

Tables of Contents

1. INTRODUCTION ...otiiiiiiiiiiiiiiiee e

1.1 FEATURES oottt
1.2 SPECIFICATIONSceiiiuretieistrreeesaenreeesssneeesanneeeesnnneeesenreeesanneeeeennnes
1.3 ORDER DESCRIPTION ...ootiiiitiiieiirreieisnreee s e e s snee e seenre e e s
1.4 PCIDATA ACQUISITION FAMILY ...oieeiiiiiiie e

1.5 PRODUCT CHECK LIST ..ttt e e
2. HARDWARE CONFIGURATION. ..ottt

2.1 BOARD LAYOUTetiiiiiiiie ettt
2.2 COUNTER ARCHITECTURE......cetiiiiurereeiiireneessrneeessnneeesenneeessnneeesennes
2.3 INTERRUPT OPERATION ...ccoiitriieeiiireeeessireeeessnneeessnneeesenneee s e e s
2.4 D/I/O BLOCK DIAGRAMcciiteiiieieireeesireesneeasnneesree e snee e snee e
2.5 D/A ARCHITECTURE ...oviiiriiiieeesireesreeesireesneeasnneesneeesnneesnesesnneesneeens
2.6 D/A CONVERT OPERATION ...ooiiiirierirereitreesreessrneesreeessneesnesssnneesneeans
2.7 THE CONNECTORS .eieiiittiieeiitreeeesrireeeesssnne e e s snre e e s e s enree e e e e

2.8 DAUGHTER BOARDSotuiiiiiiiee ettt e e e e e e e ea e e e eaan
3. /O CONTROL REGISTER......ccciiiittee ettt

3.1 HOW TO FIND THE I/O ADDRESSccevvtiiiiieeiieeiiieeseeeseeesniseeeeeeeeennnes
3.2 THE ASSIGNMENT OF /O ADDRESS.....uuuiiiiieiiieeiiiiieieeeseressiinseeeseeeesnnns
3.3 THE /O ADDRESS MAP ...covvtiieiiiiieeetee et e e e e eeeaaans

4.2 DEMOL ...
4.3 DEMOZ ...
4.4 DEMOS ...
4.5 DEMOS ...
4.6 DEMOB ...
4.7 DEMOY ...

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

1. INTRODUCTION

The PIO-DA16, PIO-DA8 and PIO-DA4 are multi-channel D/A boards for the
PCI bus for IBM or compatible PC.

The PIO-DA16/8/4 offers 16/8/4 channels double-buffered analog output. The
output range may be configured in different ranges: £10V, 5V, 0~10V, 0~5V
voltage output or 4~20mA, 0~20mA current loop sink.

The innovative design improves several drawbacks of the conventional D/A
boards. For examples: 1. Jumperless and without trim-pot. 2. The calibration is
performed under software control eliminating manual trim-pot adjustments. The
calibration data is stored in EEPROM. 3. Each channel can be selected as voltage or
current output. 4. High channel count output can be implemented in half size.

Note: This card need +12V power supply. It can be found in regular
PC or Industrial PC.

1.1 Features

e PCI bus

e 16/8/4 channels, 14-bits analog output

e Unipolar or bipolar outputs available from each converter

e Output type (Unipolar or bipolar) and output range (0~5V, £5V, 0~10V, £10V)
can be software programmable

e 4~20mA or 0~20mA current sink to ground for each converter

e Two pacer timer interrupt source

e Double-buffered D/A latches

e Software calibration

e 16 channels DI, 16 channels DO

e SMD, short card.

e One D-Sub connector, two 20-pin flat cable connectors

e Connects directly to DB-16P, DB-16R, DB-24C, DB-24PR and DB-24POR

e Automatically detected by Windows 95/98/2000/XP

e No base address or IRQ jumper need to set

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 3

1.2 Specifications

Digital Inputs/Outputs

e All inputs/outputs are TTL compatible
e Logic high Voltage Vin: 2.4V(Min.)

e Logic low Voltage ViL: 0.8V (Max.)

e Sink current loL: 8mA(Max.)

e Source current loH: 0.4mA(Max.)
Analog Outputs

e DJ/A converter: Quad 14 bits MDAC

e Channels: 16/8/4 independent

e Resolution: 14 bits

e Type: double-buffered, multiplying

e Integral linearity: 0.006% FSR (typical)
e Differential linearity: 0.006% FSR (typical)
Voltage Output Range:

e Unipolar: 0~5V or 0~10V

e Bipolar: 10V or 5V

e Current drive: £5mA

e Absolute accuracy : 0.01% FSR (typical)
Current Output Range:

e 0~20mA or 4~20mA

e Absolute accuracy: 0.1% FSR (typical)
e Excitation voltage range: +7V to +40V
Power Consumption:

e PIO-DA4: +5VDC @ 600mA

e PIO-DAS8: +5vVDC @ 800mA

e PIO-DA16: +5VDC @ 1400mA
Environmental:

e Operating Temp.: 0~60°C

e Storage Temp.: -20°C~80°C

e Humidity : 0~90% non-condensing
Dimension:

e 180 mm x 115mm

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

1.3 Order Description
e PIO-DA16 : PCI bus 16 channel D/A board

e PIO-DAS8 : PCI bus 8 channel D/A board

e PIO-DAA4 : PCI bus 4 channel D/A board

1.3.1 Options

DB-16P: 16 channel isolated D/l board

DB-16R: 16 channel relay board

DB-24PR: 24 channel power relay board

DB-24POR: 24 channel PhotoMos output board

DB-24C: 24-channel open-collector output board

ADP-20/PCI : extender, 20-pin header to 20-pin header for PCI Bus I/0O

1.4 PCI Data Acquisition Family

We provide a family of PCI-BUS data acquisition cards. These cards can be

divided into three groups as follows:

1. PClI-series: first generation, isolated or non-isolated cards
PCI-1002/1202/1800/1802/1602: multi-function family, non-isolated
PCI-P16R16/P16C16/P16POR16/P8R8: D/1/O family, isolated
PCI-TMC12: timer/counter card, non-isolated

2. PIlO-series: cost-effective generation, non-isolated cards
P10-823/821: multi-function family
P10-D168/D144/D96/D64/D56/D48/D24: D/1/O family
P10O-DA16/DA8/DA4: D/A family

3. PISO-series: cost-effective generation, isolated cards
P1SO-813: A/D card
PISO-P32C32/P64/C64/A64/P32A32: D/I/O family
PISO-P8R8/PBSSRBAC/P8SSR8DC: D/I/O family
P1SO-730: D/1/0O card
PISO-DA2: D/A card

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 5

1.5 Product Check List

In addition to this manual, the package includes the following items:

e One piece of PIO-DA16/8/4 card

e One piece of company floppy diskette or CD

e One piece of release note

It is recommended to read the release note firstly. All important information will be
given in release note as follows:

1.Where you can find the software driver & utility

2.How to install software & utility

3.Where is the diagnostic program

4.FAQ

Attention!
If any of these items is missing or damaged, contact the dealer
from whom you purchased the product. Save the shipping
materials and carton in case you want to ship or store the
product in the future.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 6

2. Hardware configuration

2.1 Board Layout

O [
O [

ENOD

¥va-old]
8va-olid]
9Tva-OId]

SNg 10d

3 o
N SN 8
0000000000 O 0000000000 O
O000000000 O O0O00000000 O
- s& - 25

CONZ1: 16 channels D/O
CONZ2: 16 channels D/I
CONS3: 16/8/4 channels D/A converter voltage/current output

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) -----

2.2 Counter Architecture

There is one 8254(Timer/Counter) chip on the PIO-DA16/8/4 card. The block
diagram is given as follows:

Vcc
8254 Timer/Counter Q
CLKO < * O 4MHz
INTO O OuUTO
GATEO ®
Counter0O
CLK1<
OUT1
GATE1l ®
Counterl
CLK2 <
INT1T O ouT2
GATE2
Counter2

It provides two interrupt source, one is 16 bits timer output (INTO) and the other
one is 32 bits timer output (INT1).

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 8

2.3 Interrupt Operation

There are two interrupt sources in PIO-DA16/8/4. These two signals are named as
INTO and INT1.Their signal sources are given as follows:

INTO: 8254 counter0 output (Refer to Sec. 2.2)
INT1: 8254 counter2 output (Refer to Sec. 2.2)

If only one interrupt signal source is used, the interrupt service routine doesn’t have
to identify the interrupt source. Refer to DEMO3.C and DEMOA4.C for more
information.

If there are more than one interrupt source, the interrupt service routine has to
identify the active signals as follows: (Refer to DEMO5.C and DEMOG6.C)

1. Read the new status of all interrupt signal source

Compare the new status with old status to identify the active signals
If INTO is active, service it

If INT1 is active, service it

Save the new status to old status

a M~ N

Note: If the interrupt signal is too short, the new status may be as same as old
status. In that condition the interrupt service routine can not identify which
interrupt source is active. So the interrupt signal must be hold_active long
enough until the interrupt service routine is executed. This hold_time is different
for different O.S. The hold_time can be as short as micro-second or as long as
second. In general, 20mS is enough for all O.S.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 9

2.3.1 Interrupt Block Diagram of PIO-DA16/8/4

| % INT_CHAN_O

Level_trigger

INT_CHAN_1

(to PCI slot)

initial_low
active_high

The interrupt output signal of PIO-DA16/8/4, INT), is Level-Trigger &
Active_Low. If the INT\ generate a low_pulse, the PIO-DA16/8/4 will interrupt the
PC once a time. If INT\ is fixed in low_level, the PIO-DA16/8/4 will interrupt the PC
continuously. So the INT_CHAN_0/1 must be controlled in a pules_type signals.
They must be fixed in low_level statue normally and generated a high_pulse to
interrupt the PC.

The priority of INT_CHAN_0/1 is the same. If all these two signals are active at
the same time, then INT\ will be active only once a time. So the interrupt service
routine has to read the status of all interrupt channels for multi channels interrupt.
Refer to Sec. 2.3 for more information.

DEMOS5.C — for INT_CHAN_0 & INT_CHAN_1

If only one interrupt source is used, the interrupt service routine doesn’t have to
read the status of interrupt source. The demo programs, DEMO3.C and DEMOA4.C,
are designed for single channel interrupt demo as follows:

DEMO3.C — for INT_CHAN_1 only (initial high)

DEMOA4.C — for INT_CHAN_1 only (initial low)

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 10

2.3.2 INT_CHAN_0/1

S L
INT_CHAN_0/1 { \

Inverted/Noninverted
select
(INV0/1)

Enable/Disable select
(ENO/1)

The architecture of INT_CHAN_0 and INT_CHAN 1 is the same as above figure.
The only difference between INTO and INT1 is that INT_CHAN_0 signal source from
8254 counter0 output and INT_CHAN _1 signal source from 8254 counter2 output.

The INT_CHAN_0/1 must be fixed in low level state normally and generated a
high_pulse to interrupt the PC.

The ENO/1 can be used to enable/disable the INT_CHAN_0/1 as follows: (Refer to
Sec.3.3.4)

ENO/1 =0 — INT_CHAN_0/1 = disable

ENO/1=1— INT_CHAN_0/1 = enable

The INVO0/1 can be used to invert/non-invert the INTO/1 as follows: (Refer to
Sec.3.3.6)

INVO/1 =0 — INT_CHAN_0/1 = inverted state of INTO/1

INVO/1 =1 — INT_CHAN_0/1 = non-inverted state of INTO/1

As above discussion, if the INT\ fixed in low level state, the PIO-DA16/8/4 will
interrupt the PC continuous. So interrupt service routine should use INV0/1 to
invert/non-invert the INTO/1 to generate high_pulse (Refer to next section)

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 11

2.3.3 Initial_high, active_low Interrupt source

If the INTO (8254 counter0 output) is an initial_high, active low signal
(depend on 8254 counter mode), the interrupt service routine should use INVO to
invert/ non-invert the INTO for high_pulse generation as follows: (Refer to DEMO3.C)

Initial set:

now_int_state=1;
outportb(wBase+0x2a,0);

/* initial state for INTO
/* select the inverted INTO */

*/

void interrupt irqg_service()

it (now_int_state==1)

/* now INTO is changed to LOW

{ /* --> INT_CHAN_O=!INTO=HIGH now

COUNT_L++;

outportbh(wBase+0x2a,1);/*

/*
/*
now_int state=0; /*
else now_int_state=1; /*
/*

}
else /*
{ /*
COUNT_H++; /*

/* find a LOW_pulse (INTO)

IT((inport(wBase+7)&1)==0)/* the INTO is still fixed in LOW
/* - need to generate a high_pulse

INVO select the non-inverted input

INT_CHAN_O=INTO=LOW -->

INT_CHAN_O generate a high_pulse

now

now

don’t have to generate high_pulse

now INTO is changed to HIGH

—-> INT_CHAN_O=INTO=HIGH now
find a HIGH pulse (INTO)
IT((inport(wBase+7)&1)==1)/* the INTO is still fixed in HIGH

INTO=LOW

INTO=HIGH

/* need to generate a high_pulse
outportb(wBase+0x2a,0);/* INVO select the inverted input

/*

/*

now_int state=1; /*
else now_int_state=0; /*
/*

INT_CHAN_O=TINTO=LOW -->
INT_CHAN_O generate a high_pulse

now

now

don’t have to generate high_pulse

INTO=HIGH

INTO=LOW

3
it (wlrg>=8) outportb(A2_8259,0x20);

outportbh(Al 8259,0x20);

*/(c)
*/
*/
*/
*/

*/(d)
*/

@ (b)

INTO

(c)

(@

INVVO

INT_CHAN_O

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

2.3.4 Initial_low, active_high Interrupt source

If the INTO (8254 counterO0 output) is an initial_low, active high signal
(depend on 8254 counter mode), the interrupt service routine should use INVO to
invert/non-invert the INTO for high_pulse generation as follows: (Refer to DEMOA4.C)

Initial set:

now_int_state=0;
outportb(wBase+0x2a,1);

/* initial state for INTO

/* select the non-inverted INTO */

*/

void interrupt irqg_service()

it (now_int_state==1)

/* now INTO is changed to LOW

{ /* --> INT_CHAN_O=!INTO=HIGH now

COUNT_L++;

outportbh(wBase+0x2a,1);/*

/*
/*
now_int state=0; /*
else now_int_state=1; /*
/*

}
else /*
{ /*
COUNT_H++; /*

now

now

don’t have to generate high_pulse

now INTO is changed to HIGH

—-> INT_CHAN_O=INTO=HIGH now
find a High _pulse (INTO)
IT((inport(wBase+7)&1)==1)/* the INTO is still fixed in HIGH

INTO=LOW

INTO=HIGH

/* find a LOW_pulse (INTO)

IT((inport(wBase+7)&1)==0)/* the INTO is still fixed in LOW
/* - need to generate a high_pulse

INVO select the non-inverted input

INT_CHAN_O=INTO=LOW -->

INT_CHAN_O generate a high_pulse

/* need to generate a high_pulse
outportb(wBase+0x2a,0);/* INVO select the inverted input

/*

/*

now_int state=1; /*
else now_int_state=0; /*
/*

INT_CHAN_O=TINTO=LOW -->
INT_CHAN_O generate a high_pulse

now

now

don’t have to generate high_pulse

INTO=HIGH

INTO=LOW

3
it (wlrg>=8) outportb(A2_8259,0x20);

outportbh(Al 8259,0x20);

*/(a)
*/
*/
*/
*/

*/(b)
*/

@ (b)

©

INTO

INVVO

()

INT_CHAN_O

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

2.3.5 Multiple Interrupt Source
Assume : INTO is initial Low, active High,
INT1 is initial High, active Low

as follows:
INTO
\ 4
A
INT1
INTO & INT1 o s
. are return to
are active at ¢ P
_ normal at the
the same time i
same time
INT1 is return INT1 is active
to normal

Refer to DEMOS5.C for source program. All of these falling-edge & rising-edge can
be detected by DEMO5.C.

Note: when the interrupt is active, the user program has to identify the active
signals. These signals may be active at the same time. So the interrupt service
routine has to service all active signals at the same time.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 14

/* Note : 1.The hold_time of INT_CHAN_O & INT_CHAN_1 must long */

/* enoug. */
/* 2.The ISR must read the interrupt status again to */
/* identify the active interrupt source. */
/* 3.The INT_CHAN_ O & INT_CHAN_1 can be active at the same */
/* time. */
/* __ */
void interrupt irqg_service()
/* now ISR can not know which interrupt is active */
new_int_state=inportb(wBase+7)&0x03; /* read all interrupt */
/* signal state */
int_c=new_int_state™now_int_state; /* compare new_state to */
/* old_state */
it ((int_c&0x01)==1) /* INT_CHAN_O is active */
{
if ((new_int _state&l)==0) /* INTO change to low now */
{
INTO_L++;
¥ _
else /* INTO change to high now */
{
INTO_H++;
invert=invert"l; /* generate high_pulse */
}
it ((int_c&0x02)==2) /* INT_CHAN_1 is active */
{
if ((new_int _state&2)==0) /* INT1 change to low now */
{
INTL L++;
3 _
else /* INT1 change to high now */
{
INT1_H++;
o _
invert=invert"2; /* generate high_pulse */
}
now_int_state=new_int_state; /* update interrupt status */
outportbh(wBase+0x2a, invert); /* generate a high pulse */

it (wlrg>=8) outportb(A2_8259,0x20);
outportb(Al_8259,0x20);

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 15

2.4 D/1/O Block Diagram

The PIO-DAL16/8/4 provides 16 channels digital input and 16 channels digital
output. All signal levels are TTL compatible. The connection diagram and block
diagram are given as follows:

CON2

[oXe)
[oXe)
[oXe)
[oXe)
R 100

16 bits D/l port 16 bits o O[
[oXe)
[oXe)
[oXe)
oo

CON1

[oXe)
[oXe)
[oXe)
[oXe)
— — [oXe)

16 bits D/O port 16 bits o O[
[oXe)
[oXe)
[oXe)
oo

sng ereq [e207

The D/1 port can be connected to the DB-16P. The DB-16P is a 16 channels
isolated digital input daughter board. The D/O port can be connected to the DB-16R
or DB-24PR. The DB-16R is a 16 channels relay output board. The DB-24PR is a 24
channels power relay output board.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 16

2.4.1 DI Port Architecture (CON2)

When the PC is power-up, all operation of DI port (CON2) are disabled. The
enable/disable of DI port is controlled by the RESET\ signal. Refer to Sec. 3.3.1 for
more information about RESET\ signal.

e The RESET\ is in Low-state - all DI operation is disable
e The RESET\ is in High-state - all DI operation is enable

RESET\
disable
Data , CON2
<«———| Buffer input [&——

——» >Clock input

D/l buffer CKT

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 17

2.4.2 DO Port Architecture (CON1)

When the PC is power-up, all of DO states are clear to low state. The RESET\
signal is used to clear DO states. Refer to Sec. 3.3.1 for more information about

RESET\ signal.

e The RESET\ is in Low-state = all DOs are clear to low state

The block diagram of DO is given as follows:

RESET\

Data

:

clear

input Latch

Clock input

D/O buffer CKT

CON1

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 18

2.5 D/A Architecture

dO d13
dl4~d15

o |

% do~d13

@

=

@

QL

o d14~d15

=4

Q

o

[

ol |

L~ dO d13

|_\

o

o

~—+

0, d14~d15
dO d13
d14~d15

Voltage Output

Voltage Output

Voltage Output

Voltage Output

Voltage Output

Voltage Output

Voltage Output

Voltage Output

Voltage Output

Voltage Output

[(e][oe] EN] 2] [63] EXN [PV 1 V] [o (@]

Voltage Output

Voltage Output

Voltage Output

Voltage Output

Voltage Output

Voltage Output

Current Output

Current Output

Current Output

Current Output

Current Output

Current Output

Current Output

Current Output

Current Output

Current Output

Current Output

Current Output

Current Output

Current Output

DA 0
DO DA 0O
| DA 1
D13
DA 2
A0
Al DA 3
DA 1
DO DA 4
| DA 5
D13
DA 6
A0
Al DA 7
DA 2
DO DA 8
| DA 9
D13
DA10
A0
Al DA11
DA 3
DO DA12
| DA13
D13
DA14
A0
Al DA15

Current Output

Current Output

The PIO-DA16/8/4 offers 16/8/4 channels double-buffered digital to analog output

and provide voltage output & current output simultaneous.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

2.6 D/A Convert Operation

The D/A converters on PIO-DA16/8/4 have 14 bits resolution, so the digital data
value range from 0x0000 to 0x3fff. And the hardware is designed to output voltage
range from -10.1~+10.1 as follows:

0x0000 — about -10.1 volt
Ox3FFF — about +10.1 volt

In the conventional design, there will be some VRs to adjust to let 0x0000=-10.0V
& 0x3fff=+10.0V for voltage output. Also these VRs have to be adjusted to let
Ox1fff=0mA & 0x3fff=20mA for current output. In the conventional design, these
VRs are common for voltage/current output. So the user has to perform calibration
when change from voltage to current. Also if these VRs are changed, the user has to
perform calibration again. This procedure is complex & heavy load. The PIO-
DA16/8/4 use software calibration to replace this complex procedure as following:

e for each voltage output channel we find two hex value MaxV[n] and MinV[n]
(stored to on board EEPROM). MaxV[n] mapping to accurate +10V and MinV[n]
mapping to accurate —10V.

e For each current output channel we also find two hex values MaxI[n] and Minl[n]
(stored to on board EEPROM). MaxI[n] mapping to accurate 20mA and Minl[n]
mapping to accurate OmA.

Hex Value Ideal / Actual Calibration
OX3FFF —_ +10.1V / +10.?2V
MaxV[n] t — i +10.0V

MaxI[n] - S 20mA
DaVvalue —» « Vout / lout
Minl[n] - — - OmA
MinV[n] —» | -« -10.0V
0X0000 —4 -10.1V /-10.?V

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 20

Therefore the software can calibrate the analog output without any hardware Trim-
pot adjustment. For example,

channel n MinV[n] MaxV[n] Minl[n] MaxI[n]
0 134 16297 8180 15943
1 137 16293 8172 15976
2 132 16296 8199 15949
3 134 16391 8177 15963
4 135 16298 8165 15955
5 131 16292 8150 15947
6 136 16295 8172 15968
7 134 16297 8163 15961
8 134 16294 8188 15959
9 132 16295 8169 15948
10 135 16298 8172 15946
11 133 16296 8177 15975
12 131 16292 8159 15942
13 134 16297 8173 15973
14 132 16293 8168 15949
15 133 16295 8175 15965

If the user want to send VVout(volt) to channel n, the calibrated hex value, DaValue,
sent to D/A converter is give as follows:

DeltaV[n]=20.0/(MaxV[n]-MinV[n]); /* DeltaV[n]=volt per count at channel_n */
DaValue=(Vout+10.0)/DeltaV[n]+MinV[n]; /* DaValue=Hex value send to D/A */
pio_dal6_da(n,DaValue); /* send DaValue to channel n */

If the user want to send lout(mA) to channel n, the calibrated hex value, DaValue,
sent to D/A converter is give as follows: (Refer to DEMO9.C)

Deltal[n]=20.0/(MaxI[n]-Minl[n]); /* Deltal[n]=mA per count at channel_n */
DaValue=lout/Deltal[n]+Minl[n]; [* DaValue=Hex value send to D/A */
pio_dal6_da(n,DaValue); /* send DaValue to channel n */

Refer to DEMO7.C and DEMQO?9.C for more information.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 21

2.6.1 Output Range and Resolution

The voltage output range of PIO-DA16/8/4 is always in £10.1V and the current

output range is always in 0~22mA as following:

Current

Voltage
Channel Output Channel Output

Hex Value

22mA 22mA

+10.1V

+10.1V

OmA

OX3FFF —

OX2FFF —

0X25D0 —

OX1FFF —

OXOFFF —

0X0000 —

-10.1v

The resolution of each range is given as follows:

Resolution

1.22mV

1.22mV

1.22mV

1.22mV
2.70uA
2.70uA

Equivalent Bit

14 bit

13 bit

13 bit

12 bit

13 bit

13 bit

Configuration

-10V ~ +10V

oV ~ 10V

-5V ~ +5V

oV ~ +5V
OmA ~ 20mA
4mA ~ 20mA

22

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) -----

2.6.2 The £10V Voltage Output

The voltage output of PIO-DA16/8/4 is always in £10.1V range. If the user need to
output £10V range, the software is same as described in Sec.2.6. Because the user
wants to output +10V range, Vout will be in £10V range, the DaValue will be about
from 0x0000 to 0x3fff. This means the resolution is about 14 bit.

2.6.3 The x5V Voltage Output

The voltage output of PIO-DA16/8/4 is always in £10.1V range. If the user need to
output £5V range, the software is same as described in Sec.2.6. Because the user want
to output £5V range, Vout will be in £5V range, the DaValue will be about from
OxOfff to Ox2fff. This means the resolution is about 13 bit.

2.6.4 The 0~10V Voltage Output

The voltage output of PIO-DA16/8/4 is always in £10V.1 range. If the user need to
output 0~10V range, the software is same as described in Sec.2.6. Because the user
want to output 0~10V range, Vout will be in 0~10V range, the DaValue will be about
from Ox1fff to Ox3fff. This means the resolution is about 13 bit.

2.6.5 The 0~5V Voltage Output

The voltage output of PIO-DA16/8/4 is always in £10.1V range. If the user need to
output 0~5V range, the software is same as described in Sec.2.6. Because the user
want to output 0~5V range, Vout will be in 0~5V range, the wDaValue will be about
from Ox1fff to Ox2fff. This means the resolution is about 12 bit.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 23

2.6.6 The 0~20mA Current Output

The current output of PIO-DA16/8/4 is always in 0~22mA range. If the user need
to output 0~20mA, the software is the same as described in Sec.2.6. Because the user
want to output 0~20mA, lout will be in the 0~20mA range. So the DaValue will be
about from Ox1fff to Ox3fff. This means the resolution is about 13 bit.

2.6.7 The 4~20mA Current Output

The current output of PIO-DA16/8/4 is always in 0~22mA range. If the user need
to output 4~20mA, the software is the same as described in Sec.2.6. Because the user
want to output 4~20mA, lout will be in the 4~20mA range. So the DaValue will be
about from 0x2600 to 0x3fff. This means the resolution is about 13 bit.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 24

2.6.8 No VR & No Jumper Design

In the conventional 12-bit D/A board, for example A-626/A-628, there are many
jumpers for the following functions:

(1) select the reference voltage (internal —10/-5/or external)

(2) select unipolar/bipolar (0-10V or £10V)

(3) select different output range (0-10V or 0-5V)

And there are many VRs for the following functions:

(1) voltage output offset adjustment

(2) voltage output full-scale adjustment

(3) current output offset adjustment

(4) current output full-scale adjustment

There are so many VRs and jumpers, this make the QC and re-calibration very
difficult. Every step must be handled by human hand. It is not a happy job for people
to calibrate these D/A boards.

When we design the PIO-DA/16/8/4, we try to remove all these terrible VRs and
jumpers but still maintain the same precision and performance. In the long run, we
select a 14-bit D/A converter and adapt the software calibration to provide at least the
same performance & precision as A-626/A-628 as follows:

Configuration Equivalent Bit Resolution
-10V ~ +10V 14 bit 1.22mV
oV ~ 10V 13 bit 1.22mV
-5V ~ +5V 13 bit 1.22mV
0V ~ +5V 12 bit 1.22mV
OmA ~ 20mA 13 bit 2.70uA
4mA ~ 20mA 13 bit 2.70uA

e All these VRs and jumpers are removed.

e All calibrations can be done by software.

e All channel configurations can be selected by software, no need to change any
hardware.

e The Precision is at least the same as A-626/A628.

e All these 16 channels can be configured and used in the different configuration at
the same time. (For example, channel _0=+10V, channel_1=4~20mA,
channel_2=0~5V, ...).

e All these features can be implemented in a small, compact, reliable and half-size
PCB.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 25

2.6.9

Itisre
The 1-7000

channel 16-

calibration.

Factory Software Calibration

commended to use a 16-bit A/D card to calibration the PIO-DA16/8/4.
series is a set of precision remote control modules. The 1-7017 is 8-

bit precision A/D module (24-bit sigma-delta A/D converter), we use two
1-7017 for voltage output calibration and another two 1-7017 for current output

The steps for channel_n voltage calibration are given as follows:

Step 1:
Step 2:
Step 3:

Step 4:
Step 5:
Step 6:
Step 7:
Step 8:

Step 9:

DaValue=0

send DaValue to PIO-DA16/8/4 channel_n
measure the 1-7017 channel_n,

If this value is just >= -10V, than goto step 5
incrememt DaValue, goto step 2
MinV[n]=DaValue-1

DaValue=0x3fff

send DaValue to PIO-DA16/8/4 channel_n
measure the 1-7017 channel_n,

If this value is just >= +10V, than goto step 10
increment DaValue, goto step 7

Step 10: MaxV[n]=DaValue
Note: MinV[n] & MaxV[n] are discribed in Sec.2.6

The steps for channel_n current calibration are given as follows:

Step 1:
Step 2:
Step 3:

Step 4:
Step 5:
Step 6:
Step 7:
Step 8:

Step 9:

DaValue=0x1fff

send DaValue to PIO-DA16/8/4 channel_n
measure the 1-7017 channel_n,

If this value is just >= OmA, than goto step 5
incrememt DaValue, goto step 2
Minl[n]=DaValue-1

DaValue=0x3fff

send DaValue to PIO-DA16/8/4 channel_n
measure the 1-7017 channel_n,

If this value is just >= 20mA, than goto step 10
increment DaValue, goto step 7

Step 10: MaxI[n]=DaValue
Note: Minl[n] & MaxI[n] are discribed in Sec.2.6

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 26

2.6.10 User Software Calibration

User can perform calibration himself with a voltage meter and a current meter.

Stepl: Run DEMO12.EXE

Step2: Select card number (PIO-DA16/PIO-DA8/P10-DA4) that you want to
calibrate

Step3: Select which item (MinV[n]/MaxV[n]/Minl[n]/MaxI[n]) that you want to
calibrate

Step4: To measure the analog output by voltage meter or current meter and decide to
increment or decrement DaValue. The DaValue will send to D/A converter at
once. By the measured result user can find the proper value of DaValue that
mapping to accurate output value.

Step5: Repeat step4 for each channel

After this procedure, the new data of MinV[n]/MaxV[n]/MinlI[n]/MaxI[n] will be
stored to on board EEPROM.

User can run DEMO10.EXE to back-up the old calibration data to
“A:\DA16.DAT” before new calibration.

If something error during the new calibration, user can run DEMO11.EXE to
download data from “A:\DA16.DAT” to EEPROM.

Note :
DEMO10.EXE — save old calibration data
DEMO11.EXE — download old calibration data
DEMO12.EXE — perform new calibration

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 27

2.6.10 Voltage Output Connection

External 4—‘

Load

Output Current
Max (+/- 5mA)
—

’—> Internal

D/A Converter
Amp \Y

out

DO

D13

lAGND

14-bits Data

2.6.11

External Power
Supply 9~36V

Current Output Connection

External 4—‘ ’—> Internal

+

Current Loop
0~20mA

Load

AGND
4

D/A Converter

\

out

DO

D13

14-bits Data

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

2.7 The Connectors

CONL1: Digital Output Connector

Pin Assignment:

Pin Name Pin Name
1 Digital Output 0 2 Digital Output 1
3 Digital Output 2 4 Digital Output 3
5 Digital Output 4 6 Digital Output 5
7 Digital Output 6 8 Digital Output 7
9 Digital Output 8 10 Digital Output 9
11 Digital Output 10 12 Digital Output 11
13 Digital Output 12 14 Digital Output 13
15 Digital Output 14 16 Digital Output 15
17 PCB ground 18 PCB ground
19 PCB +5V 20 PCB +12V

All signals are TTL compatible.

CON2: Digital input connector

Pin assignment:
Pin Name Pin Name
1 Digital Input 0 2 Digital Input 1
3 Digital Input 2 4 Digital Input 3
5 Digital Input 4 6 Digital Input 5
7 Digital Input 6 8 Digital Input 7
9 Digital Input 8 10 Digital Input 9
11 Digital Input 10 12 Digital Input 11
13 Digital Input 12 14 Digital Input 13
15 Digital Input 14 16 Digital Input 15
17 PCB ground 18 PCB ground
19 PCB +5V 20 PCB +12V

All signals are TTL compatible.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) -----

CON3: Analog Output Connector

Pin Assignment:

Pin Name Pin Name

1 Voltage Output 0 20 Current Output 0
2 Voltage Output 1 21 Current Output 1
3 Voltage Output 2 22 Current Output 2
4 Voltage Output 3 23 Current Output 3
5 Analog ground 24 Analog ground
6 Voltage Output 4 25 Current Output 4
7 Voltage Output 5 26 Current Output 5
8 Voltage Output 6 27 Current Output 6
9 Voltage Output 7 28 Current Output 7
10 Analog ground 29 Analog ground
11 Voltage Output 8 30 Current Output 8
12 Voltage Output 9 31 Current Output

13 Voltage Output 10 32 Current Output 10
14 Voltage Output 11 33 Current Output 11
15 Analog ground 34 Current Output 12
16 Voltage Output 12 35 Current Output 13
17 Voltage Output 13 36 Current Output 14
18 Voltage Output 14 37 Current Output 15
19 Voltage Output 15

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) -----

30

2.8 Daughter Boards

2.8.1 DB-37
The DB-37 is a general purpose daughter board for D-sub 37 pins. It is designed
for easy wire connection.

2.8.2 DN-37
The DN-37 is a general purpose daughter board for DB-37 with DIN-Rail
Mounting. This board is designed for easy wire connection.

e L i e By R S 5

o e P 37pin cable z]

i R] P o

“E; ,:‘ZEC Ej; . =7 !EZ?I%I

pil | == Il == DN-37
i [T TR el

w i A Ll

“ im Ll L

2.8.3 DB-8125

The DB-8125 is a general purpose screw terminal board. It is designed for easy
wire connection. There are one DB-37 & two 20-pin flat-cable headers in the DB-8125.

| iic 37pin cable DB-8125
t S E:', . [H:ip]:trzqi:m (for DB-37 or
' 20-pin flat-cable header)

_r'l
Hi
g A
P
1=""
=

_iillllllrlll.l.ll.l.l.l.l.l.l.l.l a

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 31

2.8.4 DB-16P Isolated Input Board

The DB-16P is a 16-channels isolated digital input daughter board. The
optically isolated inputs of the DB-16P consist of a bi-directional opto-coupler with a
resistor for current sensing. You can use the DB-16P to sense DC signal from TTL
levels up to 24V or use the DB-16P to sense a wide range of AC signals. You can use
this board to isolated the computer from large common-mode voltage, ground loops
and transient voltage spike that often occur in industrial environments.

PIO-DA16/8/4 <\>‘ :;S?ZS

— Opto-Isolated
P1O-DA16/8/4
I [|
\\

<K

/

:| DB-16P

20Pin cable

50 f

AC or DC Signal
0V to 24V

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 32

2.8.5 DB-16R Relay Board

The DB-16R, 16-channel relay output board, consists of 16 form C relays for
efficient switch of load by programmed control. It is connector and functionally
compatible with 785 series board but with industrial type terminal block. The relay
are energized by apply 5 voltage signal to the appropriated relay channel on the 20-
pin flat connector. There are 16 enunciator LEDs for each relay, light when their
associated relay is activated. To avoid overloading your PC’s power supply, this
board provides a screw terminal for external power supply.

m\ > Normal Open
O

Form C Relay
\ \ Normal Close

Com.

20Pin cable

DB-16R

PIO-DA16/8/4 Note:
Channel : 16 Form C Relay
Relay : Switching up to 0.5A at 110ACV
or 1A at 24DCV

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 33

2.8.6. DB-24PR, DB-24POR, DB-24C

DB-24PR 24*power relay, 5A/250V

DB-24POR | 24*PhotoMOS relay, 0.1A/350VAC

DB-24C 24*open collector, 100mA per channel, 30V max.

The DB-24PR, 24-channel power relay output board, consists of 8 form C and
16 form A electromechanical relays for efficient switching of load programmed
control. The contact of each relay can control a 5A load at 250ACV/30VDCV. The
relay is energized by applying a 5 voltage signal to the appropriate relay channel on
the 20-pin flat cable connector (just used 16 relays) or 50-pin flat cable connector.
(OPTO-22 compatible, for DIO-24 series). Twenty-four enunciator LEDs, one for

each relay, light when their associated relay is activated. To avoid overloading your
PC’ s power supply , this board needs a +12VVDC or +24VDC external power supply.

m\ Normal Open
\ Form A Relay

Com.

20Pin cable

To 20pin connector :| DB-24PR

CON1=D/O
PIO-DA16/8/4

Note:

50-Pin connector (OPTO-22 compatible), for DIO-24, DIO-48, D10-144, P10-D144,
P10-D96, PIO-D56, P10-D48, PIO-D24

20-Pin connector for 16 channel digital output, A-82X, A-62X, DI10-64, ISO-
DA16/DA8,PIO-D56, PIO-DA16/8/4

Channel : 16 Form A Relay , 8 Form C Relay

Relay : switching up to 5A at 110ACV / 5A at 30DCV

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 34

2.8.7. Daughter Board Comparison Table
20-pin flat-cable 50-pin flat-cable DB-37
header header Header

DB-37 No No Yes

DN-37 No No Yes

ADP-37/PCI No Yes Yes

ADP-50/PCI No Yes No

DB-24P No Yes No

DB-24PD No Yes Yes

DB-16P8R No Yes Yes

DB-24R No Yes No

DB-24RD No Yes Yes

DB-24C Yes Yes Yes

DB-24PR Yes Yes No

Db-24PRD No Yes Yes

DB-24POR Yes Yes Yes

DB-24SSR No Yes Yes

Note : There is no 50 pin flat-cable header in PIO-DA16/8/4. The PIO-DA16/8/4 has

one DB-37 connector and two 20-pin flat-cable headers.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

----- 35

3. /O Control Register

3.1 Howto Find the I/O Address

The plug & play BIOS will assign a proper 1/O address to every PIO/PISO series
card in the power-up stage. The fixed IDs of card are given as following:

P10-DA16/DA8/DA4

<Revl.0~Rev30> <Rev4.0>

® Vendor ID= OxE159 ® Vendor ID OxE159
® Device ID= 0x02 ® Device ID= 0x01

® Sub-Vendor ID= 0x80 ® Sub-Vendor ID= 0x4180
® Sub-Device ID= 0x04 ® Sub-Device ID=0x00

® Sub-Aux ID= 0x00 ® Sub-Aux ID= 0x00

We provide all necessary functions as follows:

1. PIO_Driverlnit(&wBoard, wSubVendor, wSubDevice, wSubAux)

2. P10O_GetConfigAddressSpace(wBoardNo,*wBase,*wlrg, *wSubVendor,
*wSubDevice, *wSubAux, *wSlotBus, *wSlotDevice)

3. Show_PIO_PISO(wSubVendor, wSubDevice, wSubAux)

All functions are defined in PIO.H. Refer to Chapter 4 for more information. The
important driver information is given as follows:
1. Resource-allocated information:
e wBase : BASE address mapping in this PC
e wirg: IRQ channel number allocated in this PC
2. PIO/PISO identification information:
e wSubVendor: subVendor ID of this board
e wSubDevice: subDevice ID of this board
e WSubAux: subAux ID of this board
3. PC’s physical slot information:
e wSlotBus: hardware slot ID1 in this PC’s slot position
e wSlotDevice: hardware slot ID2 in this PC’s slot position
The utility program, P1O_PISO.EXE, will detect & show all PIO/PISO cards
installed in this PC. Refer to Sec. 4.1 for more information.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 36

3.1.1 PIO_Driverlnit

P10O_Driverlnit(&wBoards, wSubVendor,wSubDevice,wSubAux)
e wBoards=0to N - number of boards found in this PC

e wSubVendor - subVendor ID of board to find
e wWSubDevice - subDevice ID of board to find
e WSubAuUX - subAux ID of board to find

This function can detect all PIO/PISO series card in the system. It is
implemented based on the PCI plug & play mechanism-1. It will find all PIO/PISO
series cards installed in this system & save all their resource in the library.

Sample program 1: find all PIO-DA16/8/4 in this PC

wSubVendor=0x80; wSubDevice=4; wSubAux=0x00; /* for PIO_DA16/8/4 */
wRetVal=PIO_Driverlnit(&wBoards, wSubVendor,wSubDevice,wSubAux);
printf("Threr are %d PIO-DA16 Cards in this PC\n",wBoards);

[* step2: save resource of all PIO-DA16/8/4 cards installed in this PC */
for (i=0; i<wBoards; i++)

{

P10O_GetConfigAddressSpace(i,&wBase,&wIrg,&wID1,&wID2,&wID3,&wID4,
&wIDb);

printf(*\nCard_%d: wBase=%x, wlrqg=%Xx", i,wBase,wlrq);

wConfigSpace[i][0]=wBaseAddress; /* save all resource of this card */

wConfigSpace[i][1]=wIrq; /* save all resource of this card */

}

Sample program 2: find all PIO/PISO in this PC (refer to Sec. 4.1 for more
information)

wRetVal=PI10_Driverlnit(&wBoards,0xff,0xff,0xff); /*find all PIO_PISO*/
printf(C"\nThrer are %d PI10_PISO Cards in this PC",wBoards);
if (wBoards==0) exit(0);

printfC\N---—-—----—- oo o o o o i i i b o ;s
for(i=0; i<wBoards; i++)

{
P10_GetConfigAddressSpace(i,&wBase,&wlrqg,&wSubVendor,
&wSubDevice, &wSubAux,&wSlotBus,&wSlotDevice);

printf(""\nCard_%d:wBase=%x,wlrq=%x,subID=[%x,%x,%x],
SlotID=[%x,%x]", i ,wBase,wlrq,wSubVendor ,wSubDevice,
wSubAux ,wSlotBus,wSlotDevice);

printf("" --> '");

ShowPioPiso(wSubVendor ,wSubDevice ,wSubAux) ;

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 37

3.1.2 PIO_GetConfigAddressSpace

P10_GetConfigAddressSpace(wBoardNo,*wBase,*wlrg, *wSubVendor,
*wSubDevice,*wSubAux,*wSlotBus, *wSlotDevice)
e wBoardNo=0to N - totally N+1 boards found by PIO_Drivelnit(....)

e WBase -> base address of the board control word

e wirg -> allocated IRQ channel number of this board
e wSubVendor -> subVendor ID of this board

e wSubDevice -> subDevice ID of this board

e WSubAuXx - subAux ID of this board

e wSlotBus -> hardware slot ID1 of this board

e wSlotDevice -> hardware slot ID2 of this board

The user can use this function to save resource of all PIO/PISO cards installed in
this system. Then the application program can control all functions of PIO/PISO
series card directly.

The sample program source is given as follows:

[* stepl: detect all PIO-DA16/8/4 cards first */

wSubVendor=0x80; wSubDevice=4; wSubAux=0x00; /* for PIO_DA16/8/4 */
wRetVal=PIO_Driverlnit(&wBoards, wSubVendor,wSubDevice,wSubAux);
printf("Threr are %d PIO-DA16/8/4 Cards in this PC\n",wBoards);

[* step2: save resource of all PIO-DA16/8/4 cards installed in this PC */
for (i=0; i<wBoards; i++)
{
P1O_GetConfigAddressSpace(i,&wBase,&wIrqg,&t1,&t2,&t3,&t4,&t5);
printf("\nCard_%d: wBase=%x, wlrg=%x", i,wBase,wlrq);

wConfigSpace[i][0]=wBaseAddress; /* save all resource of this card */
wConfigSpace[i][1]=wIrg; I* save all resource of this card */
}
[* step3: control the PIO-DA16/8/4 directly */
wBase=wConfigSpace[0][0];/* get base address the card_0 */
outport(wBase,1); /* enable all D/1/O operation of card_0 */
wBase=wConfigSpace[1][0];/* get base address the card_1 */
outport(wBase,1); /* enable all D/1/O operation of card_1 */

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 38

3.1.3 Show_PIO_PISO

Show_PI1O_PISO(wSubVendor,wSubDevice,wSubAux)

e wSubVendor = subVendor ID of board to find

e wSubDevice - subDevice ID of board to find

e WSubAux -> subAux ID of board to find

This function will show a text string for those special sublDs. This text string is the
same as that defined in PIO.H

The demo program is given as follows:

wRetVal=PI10_Driverlnit(&wBoards,0xff,0xff,0xff); /*find all PIO_PISO*/
printf(C"\nThrer are %d PI10_PISO Cards in this PC",wBoards);
if (wBoards==0) exit(0);

printfC\N---—-—----—- oo o o o o i i i b o ;s
for(i=0; i<wBoards; i++)

{
P10_GetConfigAddressSpace(i,&wBase,&wlrqg,&wSubVendor,
&wSubDevice, &wSubAux,&wSlotBus,&wSlotDevice);

printf("\nCard_%d:wBase=%x,wlrq=%x,subID=[%x,%x,%x],
SlotID=[%x,%x]", i ,wBase,wlrq,wSubVendor ,wSubDevice,
wSubAux ,wSlotBus,wSlotDevice);

printf("" --> ");

ShowPioPiso(wSubVendor ,wSubDevice ,wSubAux) ;

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 39

3.2 The Assignment of I/O Address

The plug & play BIOS will assign the proper 1/0 address to PIO/PISO series
card. If there is only one PIO/PISO board, the user can identify the board as card 0.
If there are two PIO/PISO boards in the system, the user will be very difficult to
identify which board is card_0 ? The software driver can support 16 boards max.
Therefore the user can install 16 boards of PIO/PSIO series in one PC system. How
to find the card 0 & card_1?

It is difficult to find the card NO. The simplest way to identify which card
is card_0 is to use wSlotBus & wSlotDevice as following:

1. Remove all PIO-DA16/8/4 from this PC

2. Install one PIO-DA16/8/4 into the PC’s PCI_slotl, run PIO_PISO.EXE &

record the wSlotBusl & wSlotDevicel

3. Remove all PIO-DA16/8/4 from this PC

4. Install one PIO-DAL16/8/4 into the PC’s PCI_slot2, run PIO_PISO.EXE &

record the wSlotBus2 & wSlotDevice2

5. repeat (3) & (4) for all PCI_slot?, record all wSlotBus? & wSlotDevice?

The records may be as follows:

PC’s PCI slot WslotBus WSlotDevice
Slot 1 0 0x07

Slot 2 0 0x08

Slot_3 0 0x09

Slot 4 0 0x0A
PCI-BRIDGE

Slot 5 1 0x0A

Slot_6 1 0x08

Slot 7 1 0x09

Slot_8 1 0x07

The above procedure will record all wSlotBus? & wSlotDevice? in this PC. These

values will be mapped to this PC’s physical slot. This mapping will not be changed

for any PIO/PISO cards. So it can be used to identify the specified PIO/PISO card as

following:

Step 1: Record all wSlotBus? & wSlotDevice?

Step2: Use PIO_GetConfigAddressSpace(...) to get the specified card’s wSlotBus
& wSlotDevice

Step3: The user can identify the specified PIO/PISO card if he compare the
wSlotBus & wSlotDevice in step?2 to stepl.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 40

3.3 Thel/O Address Map

The 1/0 addresses of PIO/ PISO series card are automatically assigned
by the main board ROM BIOS. The 1/0O address can also be re-assigned by
user. It is strongly recommended not to change the 1/O address by user.
The plug & play BIOS will assign proper 1/0O address to each PIO/PISO
series card very well. The I/O address list of PIO-DA16/8/4 is given as

follows:

Address Read Write

wBase+0 RESET\ control register Same

wBase+2 Aux control register Same

wBase+3 Aux data register Same

wBase+5 INT mask control register Same

wBase+7 AuX pin status register Same

wBase+0x2a |INT polarity control register |Same

wBase+0xc0 |Read 8254-counter0 Write 8254-counterQ
wBase+0xc4 |Read 8254-counterl Write 8254-counterl
wBase+0xc8 |Read 8254-counter? Write 8254-counter?
wBase+0xcc |Read 8254 control word Write 8254 control word
wBase+0xe0 |Reserved DA 0 chip select
wBase+0xe4 |Reserved DA 1 chip select
wBase+0xe8 |Reserved DA 2 chip select
wBase+0xec |Reserved DA 3 chip select
wBase+0xf0 |Reserved Write low byte of D/A
wBase+0xf4 |Reserved Write high byte of D/A
wBase+0xf8 |Read low byte of D/I Write low byte of D/O
wBase+0xfc |Read high byte of D/I Write high byte of D/O

Note. Refer to Sec. 3.1 for more information about wBase.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

41

3.3.1. RESET\ Control Register

(Read/Write): wBase+0

Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved |Reserved |Reserved |Reserved |[Reserved |Reserved |Reserved |RESET\

Note. Refer to Sec. 3.1 for more information about wBase.
When the PC is first power-up, the RESET\ signal is in Low-state. This will disable

all D/1/0O operations. The user has to set the RESET\ signal to High-state before any
D/1/O command.

outportb(wBase,1);
outportb(wBase,0);

/* RESET\=High -> all D/1/O are enable now */
/* RESET\=Low -> all D/I/O are disable now */

3.3.2 AUX Control Register

(Read/Write): wBase+2

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit1

Bit0

AUX7

AUx6

Auxb

Aux4

Aux3

Aux2

Aux1

Aux0

Note. Refer to Sec. 3.1 for more information about wBase.
Aux?=0-> this Aux is used as a D/I
Aux?=1-> this Aux is used as a D/O
When the PC is first power-on, All Aux? signal are in Low-state. All Aux? are
designed as D/I for all PIO/P1SO series. Please set all Aux? in D/I state.

3.3.3 AUX data Register

(Read/Write): wBase+3

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit1

Bit0

AUXT7

AUX6

Aux5

Aux4

AUx3

Aux2

Auxl

Aux0

Note. Refer to Sec. 3.1 for more information about wBase.
When the Aux? is used as D/O, the output state is controlled by this register.
This register is designed for feature extension, so don’t control this register now.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

42

3.3.4 INT Mask Control Register

(Read/Write): wBase+5

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit0
0 0 0 0 0 0 EN1 ENO
Note. Refer to Sec. 3.1 for more information about wBase.

ENO=0-> disable INTO as a interrupt signal (default)

ENO=1-> enable INTO as a interrupt signal

EN1=0-> disable INT1 as a interrupt signal (default)

EN1=1-> enable INT1 as a interrupt signal

outportb(wBase+5,0); /* disable all interrupts */
outportb(wBase+5,1); /* enable interrupt of INTO */
outportb(wBase+5,2); /* enable interrupt of INT1 */

outportb(wBase+5,3); /* enable all two channels of interrupt */
Refer to the following demo program for more information:
DEMO3.C & DEMO4.C - single interrupt source

DEMO5.C & DEMO6.C - multi interrupt source

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

43

3.3.5 Aux Status Register

(Read/Write): wBase+7

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

AUX7 AuUXx6 Aux5 Aux4 Aux3 Aux2 Auxl Aux0
Note. Refer to Sec. 3.1 for more information about wBase.

Aux0=INTO, Aux1=INT1, Aux2~3=controll EEPROM, Aux7~4=Aux-ID. Refer
to Sec. 4.1 for more information. The Aux O~1 are used as interrupt sources. The
interrupt service routine has to read this register for interrupt source identification.
Refer to Sec. 2.3 for more information.

3.3.6 Interrupt Polarity Control Register
(Read/Write): wBase+0x2A
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 X X INV1 INVO

Note. Refer to Sec. 3.1 for more information about wBase.
INV0/1=0-> select the inverted signal from INTO/1
INVO0/1=1-> select the non-inverted signal from INTO/1

outportb(wBase+0x2a,0); /* select the inverted input from all 2 channels */
outportb(wBase+0x2a,3); /* select the non-inverted input from all 2 channels */

outportb(wBase+0x2a,2); /* select the inverted input of INTO */
[* select the non-inverted input from the others ~ */

Refer to Sec. 2.3 for more information.
Refer to DEMO3/4/5/6.C for more information.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 44

3.3.7 Digital Input

(Read): wBase+0xf8 - Low byte of D/I port

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
DI7 DI6 DI5 Dl4 DI3 DI2 DI1 DIO
(Read): wBase+0xfc > High byte of D/l port

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8

Note. Refer to Sec. 3.1 for more information about wBase.

wDiLoByte = inportb(wBase+0xf8); [* read D/I states (DI 7~DI0Q) */
wDiHiByte = inportb(wBase+0xfc); /* read D/I states (DI115~DI8) */
wDiValue = (WDiHiByte<<8)|wDiLoByte;

Refer to DEMQO2.C for more information.

3.3.8 Digital Output

(Write): wBase+0xf8 - Low byte of D/O port

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

(Write): wBase+0xfc - High byte of D/O port

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

DO15 D014 DO13 DO12 DO11 DO10 DO9 DO8

Note. Refer to Sec. 3.1 for more information about wBase.

outportb(wBase+0xf8,wDoValue); /* Control the DO state (DO 7~DO0) */
outportb(wBase+0xfc,wDoValue>>8); /* Control the DO state (DO15~D08) */

Refer to DEMQ1/2.C for more information.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 45

3.3.9 Read/Write 8254

(Read/Write): wBase+0xc0=8254-counter-0

(Read/Write): wBase+0xc4=8254-counter-1

(Read/Write): wBase+0xc8=8254-counter-2

(Read/Write): wBase+0xcc=8254 control word

8254 control word

SC1 SCO RL1 RLO M2 M1 MO BCD

BCD: 0: binary count 1: BCD count

M2,M1,M0: 000:modeO interrupt on terminal count
001:model programmable one-shot
010:mode2 rate generator
011:mode3 square-wave generator

100:mode4 software triggered pulse

101:mode5 hardware triggered pulse
RL1,RLO: 00: counter latch instruction

01: read/write low counter byte only

10: read/write high counter byte only

11: read/write low counter byte first, then high counter byte
SC1,SCO0: 00: counterO

01: counterl

10: counter2

11: read -back command

WORD pio_dal6é _cO(char cConfig, char cLow, char cHigh)/*COUNTER O */

outportb(wBase+0xcc,cConfig);
outportb(wBase+0xc0,cLow);
outportb(wBase+0xc0,cHigh);
return(NoError);

}
WORD pio_dal6é_cl(char cConfig, char cLow, char cHigh)/*COUNTER_ 1 */

outportb(wBase+0xcc,cConfig);
outportb(wBase+0xc4,cLow);
outportb(wBase+0xc4,cHigh);
return(NoError);

}
WORD pio_dal6é_c2(char cConfig, char cLow, char cHigh)/*COUNTER 2 */

outportb(wBase+0xcc,cConfig);
outportb(wBase+0xc8,cLow);
outportb(wBase+0xc8,cHigh);
return(NoError);

}

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 46

3.3.10 DJ/A Select

There are 4/2/1 D/A converters in PIO-DA16/8/4 card. It is necessary to select
which D/A converter is desired after D/A data had be sent. D/A channels allocate as

follows:

Write Al A0
WBase+0xe0 0 O D/A output channel 0
0 1 D/A output channel 1
DA 0 1 0 D/A output channel 2
1 1 D/A output channel 3
Whase+0xe4 0 O D/A output channel 4
0 1 D/A output channel 5
DA 1 1 0 D/A output channel 6
1 1 D/A output channel 7
Whase+0xe8 0 O D/A output channel 8
0 1 D/A output channel 9
DA 2 1 0 D/A output channel10
1 1 D/A output channelll
Whase+0xec 0 O D/A output channel12
0 1 D/A output channel13
DA 3 1 0 D/A output channel14
1 1 D/A output channel15

Note: Refer to Sec.3.3.11 for more information about A1, A0

outportb(wBase+0xf0,wDaValue); /* output low byte of D/A data */
outportb(wBase+0xf4,(wDaValue>>8)|0x02); /* output high byte of D/A dataand */
/* select channel 2 on this converter */
outportb(wBase+0xe0,0); /* select DA_0 */
[* after this procedure wDaValue will */
/* be sent to channel 2 */
Refer to DEMO6.C, DEMO7.C, DEMO8.C and DEMO9.C for more
information.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 47

3.3.11 D/A Data Output

(write):wBase+0xf0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

D7 D6 D5 D4 D3 D2 D1 DO

(write):wBase+0xf4

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0

Al A0 D13 D12 D11 D10 D9 D8

Note: Refer to Sec.3.3.10 For more information about A1,A2

Each D/A converter has four channels analog output. When write data to D/A
converter has to indicate which channel is desire by Al and AO.

D/A programming sequence:
1. Send data to D/A converter. (This data will be buffered)
2. Select D/A converter. (Start convert)

outportb(wBase+0xf0,wDaValue); /* output low byte of D/A data */
outportb(wBase+0xf4,(wDaValue>>8)|0x02); /* output high byte of D/A dataand */
/* select channel 2 on this converter */

outportb(wBase+0xe0,0); /* select DA_0 */
[* after this procedure wDaValue will */
/* be sent to channel 2 */
pio_dal6 da(2,wDaValue); /* send wDaValue to channel_2 */

void pio_dal6_da(char cChannel _no,int iVal)

{
iVal=iVal+(cChannel_no%4)*0x4000; /* cChannel_no : 0 - 15 */
outportb(wBase+0xf0,iVal); /* iVal : 0x0000 - Ox3fff */

outportb(wBase+0xf4,(iVal>>8));
outportb(wBase+0xe0+4*(cChannel_no/4),0xff);

¥

Refer to DEMOG6.C, DEMOQO7.C, DEMOS8.C and DEMQ9.C for more
information.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 48

4.

It is recommended to read the release note first. All importance information will be

Demo Program

given in release note as follows:

1.

where you can find the software driver & utility

2. how to install software & utility
3.
4

where is the diagnostic program
FAQ
There are many demo programs given in the company floppy disk or CD.

After the software installation, the driver will be installed into disk as follows:

o \TC*~* - for Turbo C 2.xx or above
e \MSC*.* - for MSC 5.xx or above

e \BC*.* - for BC 3.xx or above

e \TC\LIB*.* - for TC library

e \TC\DEMO** -> for TC demo program

NOTE

\TC\LIB\Large*.*
\TC\LIB\Huge*.*
\TC\LIB\Large\PIO.H
\TC\\LIB\Large\TCPIO_L.LIB
\TC\LIB\Huge\PIO.H
\TC\\LIB\Huge\TCPIO_H.LIB

\MSC\LIB\Large\PI1O.H
\MSC\LIB\Large\MSCPIO_L.LIB
\MSC\LIB\Huge\PIO.H
\MSC\\LIB\Huge\MSCPIO_H.LIB

\BC\LIB\Large\PIO.H
\BC\LIB\Large\BCPIO_L.LIB
\BC\LIB\Huge\PIO.H
\BC\\LIB\Huge\BCPIO_H.LIB

- TC large model library

- TC huge model library

—> TC declaration file

- TC large model library file
—> TC declaration file

-> TC huge model library file

- MSC declaration file
- MSC large model library file
- MSC declaration file
- MSC huge model library file

- BC declaration file
-> BC large model library file
- BC declaration file
-> BC huge model library file

: The library is valid for all PIO/PISO series cards.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23)

----- 49

Demo program list :

DEMO1.EXE: D/O demo program

DEMO2.EXE: D/1/O demo program

DEMO3.EXE: Single interrupt source (initial high)
DEMOA4.EXE: Single interrupt source (initial low)
DEMOS5.EXE: Two interrupt source

DEMOG6.EXE: Waveform generator without calibration
DEMO7.EXE: Waveform generator with calibration
DEMO8S.EXE: D/A hex value output without calibration
DEMO9.EXE: D/A hex value output with calibration
DEMO10.EXE: Save EEPROM data to file
DEMO11.EXE: Download EEPROM data from file
DEMO12.EXE: User software calibration
DEMO13.EXE: Factory calibration

Note: Some demo programs do not list in this manual. Please refer to company
floppy disk or CD.

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 50

4.1 PIO_PISO

/* __ */
/* Find all PIO_PISO series cards in this PC system */
/* step 1 : plug all PI0_PISO cards into PC */
/* step 2 - run PI0_PISO.EXE */
/* __ */

#include "PIO.H"

WORD wBase,wlrq;
WORD wBase2,wlrg2;

int main()

int 1,j,J1,j2,j3,j4.k,jj.dd,j11,j22,533,j44;

WORD wBoards,wRetVal;

WORD wSubVendor ,wSubDevice,wSubAux,wSlotBus,wSlotDevice;
char c;

float ok,err;

clrscr(Q);

wRetVal=P10_DriverInit(&wBoards, Oxff,Oxff,0xFfF); /*For PI10-P1SO*/
printfF(C"\nThrer are %d PI10_PISO Cards in this PC",wBoards);

if (wBoards==0) exit(0);

printfC\p--————-—+—- o o o 0 o i i (e ———————— ");
for(i=0; i<wBoards; i++)

P10_GetConfigAddressSpace(i,&wBase, &wlrqg, &wSubVendor,
&wSubDevice, &wSubAux,&wSlotBus,&wSlotDevice);

printf("\nCard_%d:wBase=%x,wlrq=%x,sublD=[%x,%x,%x],
SlotID=[%x,%x]", i ,wBase,wlrqg,wSubVendor ,wSubDevice,
wSubAux,wSlotBus,wSlotDevice);

printf("" --> ");

ShowPioPiso(wSubVendor ,wSubDevice,wSubAux) ;

}

PI10_DriverClose();
}

NOTE: the PIO_PISO.EXE is valid for all PIO/PISO cards. The user can execute

the PIO_PISO.EXE to get the following information:

e Listall PIO/PISO cards installed in this PC

e Listall resources allocated to every PIO/PISO cards

e List the wSlotBus & wSlotDevice for specified PIO/PISO card identification.
(Refer to Sec. 3.2 for more information)

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 51

4.1.1 PIO_PISO.EXE for Windows

User can find this utility in the company CD or floppy disk. It is useful for all
PIO/PISO series card.

After executing the utility, detail information for all PIO/PISO cards that installed
in the PC will be show as follows:

/' PIO/PISO series card
BaseAddr

OxD400 PIO-DSG/ D24
‘0x0001 O0xDS00 PISO-730
OxDCO0 PIO-D144

OxEQDO PIO-DA16/DAS/DAS

Fl=0-730

Board Name :

Ba: o - [
IRO NMumber :

’7 Slot Bus Ly W (0006

P1O-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 52

4.2 DEMO1

/* DEMO1 : D/O demo for PI0-DA16/8/4 */
/* stepl : Run DEMO1.EXE */
/* step2 : Check the LEDs of DB-24C will turn on sequentially */
/* __ */

#include "PI0_H"

void pio_dal6_do(WORD wDo);
WORD wBase,wlrq;

int main()

int 1,j;

WORD wBoards,wRetVal,tl,t2,t3,t4,t5,t6;

WORD wSubVendor ,wSubDevice,wSubAux,wSlotBus,wSlotDevice;
clrscr(Q);

/* stepl : find address-mapping of PIO/PISO cards */
wRetVal=P10_Driverilnit(&wBoards,0x80,0x04,0x00);/*for PI10-DA16/8/4*/
printf(C'\n(1) Threr are %d P10-DA16/8/4 Cards in this PC",wBoards);
if (wBoards==0) exit(0);

printfFC"\n\n-————————————- The Configuration Space ---------—————- ;s
for(i=0; i<wBoards;i++)

{
P10_GetConfigAddressSpace(i,&wBase,&wlrq,&wSubVendor ,&wSubDevice,
&wSubAux, &wSlotBus,&wSlotDevice);

printf("\nCard_%d: wBase=%x,wlrqg=%x,sublID=[%x,%x,%x],
SlotID=[%x,%x]", i,wBase,wlrqg,wSubVendor ,wSubDevice,wSubAux,
wSlotBus,wSlotDevice);

printf("" --> ");
ShowPioPiso(wSubVendor ,wSubDevice,wSubAux) ;

}

P10_GetConfigAddressSpace(0,&wBase,&wlrqg,&tl,&t2,4t3,4t4,415);

/* select card 0 */
/* step2 : enable all D/1/0 port */
outportb(wBase,1); /* /RESET -> 1 */
printf("\n\n(2) DEMO1 D/O test');
3=1;
for(;:)

{

gotoxy(1,8);

pio_dal6_do(jJ);

printf('\nD0 ==> %4x",j);
delay(10000);

it (kbhit()!=0) break;

J=j<<1; J=jROXOFfFff;if (==0) j=1;

}
P10 _DriverClose();
3
/* __ */
void pio_dal6é do(WORD wDo)
{
outportb(wBase+0xf8,wDo) ; /* Oxf8 - low byte of DO port */
outportb(wBase+0xfc, (wDo>>8)); /* Oxfc - high byte of DO port */

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 53

4.3 DEMO2

/> DEMO2 : D/1/0 demo for P10-DA16/8/4

/* stepl : Connect CON1 & CON2 with a 20-pin 1 to 1 flot cable

/* step2 : Run DEMO2.EXE

/*

#include "PI0_H"

void pio_dal6é _di(WORD *wDi);
void pio_dalé do(WORD wDo);
WORD wBase,wlrq;

int main()

int i,j,k;

WORD wBoards,wRetVal,tl,€t2,t3,t4,t5,t6;

WORD wSubVendor ,wSubDevice,wSubAux,wSlotBus,wSlotDevice;

clrscrQ);

/* stepl : find address-mapping of PIO/PISO cards

/* step2 : énable all D/1/0 port
outportb(wBase,1);

printf(C"\n\n(2) DEMO2 D/1/0 test");
1=1;
for(;;)

pio_dal6 do(j);

pio_dal6_di(&k);

gotoxy(1,9);

printf("'DO = %4x , DI = %4x",j,K);
if (k!'=jJ) printf("" <-- Test Error
else printf("" <-- Test Ok
J++; J=J&OXOFFFF;if (g==0) j=1;

it (kbhit()!=0) break;

P10 _DriverClose();
}

£

void pio_dal6_di(WORD *wDi)

int in_Il,in_h;
in_l=inportb(wBase+0xe0)&0x0fF;
in_h=inportb(wBase+0xe4)&0x0ff;
CwDi)=(in_h<<8)+in_I;

void pio_dal6é _do(WORD wDo)

{

outportb(wBase+0xf8,wDo) ; /* Oxf8 :
outportb(wBase+0xfc, (wDo>>8)); /* Oxfc :
}

\.;-l

/* /RESET -> 1

low byte of DO port
high byte of DO port

*/
*/

*/

*/

*/
*/

*/

*/

*/
*/

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) -----

54

4.4 DEMOS3

/* DEMO3 : INT_CHAN_1, timer interrupt demo (initial high)

/* (1t is designed to be a machine independent timer)
/* stepl : Run DEMO3.EXE
S

#include "PI0_H"

#define Al _8259 0x20

#define A2_8259 0xAO0

static void interrupt irg_service();

void pio_dal6é_cO(char cConfig, char cLow, char cHigh);
void pio_dal6é_cl(char cConfig, char cLow, char cHigh);
void pio_dal6é _c2(char cConfig, char cLow, char cHigh);
void init_intl_highQ;

WORD wBase,wlrq;

int COUNT_L,COUNT_H,irgmask,now_int_state;

int main()

int i,j;

WORD wBoards,wRetVal,tl,t2,t3,t4,t5,t6;

WORD wSubVendor ,wSubDevice,wSubAux,wSlotBus,wSlotDevice;
clrscr(Q);

/* stepl : find address-mapping of PIO/PI1SO cards

/* step2 : énable all D/1/0 port

outportb(wBase,1); /* /RESET -> 1
printf("\n\n(2) DEMO3 Interrupt (1Hz) test');
init_intl_highQ; /* interrupt initialize, INT1 is high now

COUNT_L=0;COUNT_H=0;
printf(C"\n\n*** Show the count of Low pulse ***\n'");
for (;3)

{

gotoxy(1,10);

printFC"\nINT count = %d",COUNT_L);
ifT (kbhit()!=0) break;

outportb(wBase+5,0); /* disable all interrupt
P10 _DriverClose();

}
/* Use INT_CHAN_1 as internal interrupt signal
void init_intl _highQ

{
DWORD dwval;
disable();
outportb(wBase+5,0); /* disable all interrupt
it (wlrg<8)
{

irgmask=inportb(Al_8259+1);
outportb(Al 8259+1,irgmask & (OxFF ~ (1 << wlrq)));
setvect(wlrg+8, irqg_service);
}
else
{
irgmask=inportb(Al_8259+1);
outportb(Al 8259+1,irgmask & Oxfb); /* 1RQ2
irgmask=inportb(A2_8259+1);
outportbh(A2 _8259+1,irgmask & (OxFF ~ (1 << (wlrg-8))));
setvect(wlrg-8+0x70, irqg_service);

}
/* CLK source = 4 MHz */
pio_dal6 cl(0x76,0x90,0x01); /* COUNTER1, mode3, div 400
pio_dal6 c2(0xb6,0x10,0x27); /* COUNTER2, mode3, div 10000

*/
*/

*/

*/

*/
*/

*/

*/

*/

*/

*/

*/
*/

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 55

/* program Cout2 1Hz
/* note : the 8254 need extra 2-clock for initialization
for (53)

{
if ((inportb(wBase+7)&2)==2) break; /* wait Cout2 = high
}
/* note : Cout2 = high, INV1 must select the inverted Cout2
/* —-—> INT_CHAN_1 = ICout2 = init_low, active high
outportb(wBase+0x2a,0); /* INV1 = 0, inverted Cout2
now_int _state=1; /* now Cout2 is high
outportb(wBase+5,2); /* EN1 = 1, enable INT_CHAN_ 1
/* as interrupt source
enable();
3
Y
void interrupt irqg_service()
it (now_int_state==1) /* now INT1(Cout2) changed to low
/* —=> INT_CHAN_1=1INT1=high now

{

COUNT_L++; /* find a low pulse (INT1)
iT((inportb(wBase+7)&2)==0) /* INT1 is still fixed in low ->
{ /* need to generate a high pulse
outportb(wBase+0x2a,2); /* INV1 select non-inverted input

/* INT_CHAN 1=INT1=low -->
/* INT_CHAN_1 generate high pulse

now_int _state=0; /* now INT1=low
else now_int_state=1; /* now INT1l=high
/* don"t have to gen. high pulse
}
else /* now INT1(Cout2) changed to high
{ /* —-> INT_CHAN_1=INT1=high now
COUNT_H++; /* find a low pulse (INT1)

if((inportb(wBase+7)&2)==2) /* INT1 is still fixed in high ->
{ /* need to generate a high pulse
outportb(wBase+0x2a,0); /* INV1 select inverted input
/* INT_CHAN_1=VINT1=low -->
/* INT_CHAN_1 generate high_pulse

now_int state=1; /* now INT1l=high
}
else now_int _state=0; /* now INT1=low

/* don"t have to gen. high pulse
}
if (wlrg>=8) outportb(A2_8259,0x20);
outportb(Al_8259,0x20);
void pio_dal6é _cO(char cConfig, char cLow, char cHigh) /* COUNTERO
outportb(wBase+0xcc,cConfig);

outportb(wBase+0xc0,cLow);
outportb(wBase+0xc0,cHigh);

*/
*/

*/

*/
*/
*/

*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/
*/
*/

*/
*/

*/
*/

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 56

4.5 DEMOS5

/* DEMO5 : INT_CHAN_O & INT_CHAN_1 timer interrupt demo */
/* (1t is designed to be a machine independent timer) */
/* stepl : Run DEMO5.EXE */
/* __ */

#include "PI0_H"

#define Al _8259 0x20

#define A2_8259 0xAO0

static void interrupt irg_service();

WORD wBase,wlrq;

int irgmask,now_int_state,new_int_state,int c;
int INTO_L,INTO_H,INT1_L,INT1_H;

int bO,bl,invert;

int main()

int i,j;
WORD wBoards,wRetVal,tl,t2,t3,t4,t5,t6;
WORD wSubVendor ,wSubDevice,wSubAux,wSlotBus,wSlotDevice;

clrscr(Q);

/* stepl : find address-mapping of PIO/PISO cards */
/* step2 : enable all D/1/0 port */
outportb(wBase,1); /* /RESET -> 1 */

printF(C"\n\n(2) DEMO5 Interrupt test');

init_highQ; /* interrupt initialize, INT_CHAN_0/1 is high now */
printf(C"\n\n*** Show the count of Low_pulse ***\n");
INTO_L=INTO_H=INT1_L=INT1_H=0;

for (:3)

A

gotoxy(1,10);
printfFC"\nINTO[%x,%x] , INT1[%x,%x]", INTO_H, INTO_L,INT1_H,INT1_L);
it (kbhit()!=0) break;

outportb(wBase+5,0); /* disable all interrupt */
P10_DriverClose();

}
/* Use INT_CHAN O & INT_CHAN_1 as internal interrupt signal */
void init_highQ

{
DWORD dwval ;
disable();
outportb(wBase+5,0); /* disable all interrupt */
it (wlrg<8)
{

irgmask=inportb(Al_8259+1);
outportb(Al_8259+1,irgmask & (Oxff ™ (1 << wlrQq)));
setvect(wlrg+8, irqg_service);
}
else
{ _
irgmask=inportb(Al_8259+1);
outportb(Al 8259+1,irgmask & Oxfb); /* 1RQ2 */
irgmask=inportb(A2_8259+1);
outportb(A2_8259+1,irgmask & (Oxff ™ (1 << (wlrg-8))));
setvect(wlrqg-8+0x70, irg_service);

¥
/* CLK source = 4 MHz */

pio_dal6_ c0(0x36,0x20,0x4e); /* COUNTERO, mode3, div 20000 */

/* program CoutO 200Hz */
pio_dal6 cl(0x76,0x90,0x01); /* COUNTER1, mode3, div 400 */
pio_dal6 c2(0xb6,0x64,0x00); /* COUNTER2, mode3, div 100 */

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 57

for (53)

{
it ((inportb(wBase+7)&3)==3) break;/* wait CoutO&Cout2
}

/* program Cout2 100Hz
/* note : the 8254 need extra 2-clock for initialization

high

/* note : Cout0/2 = high, INVO/1 must select the inverted Cout0/2

/* -—> INT_CHAN_O
/* -—> INT_CHAN_1

ICoutO = init _low, active high
ICout2 = init_low, active_high

outportb(wBase+0x2a,0); /* INVO=0, INV1=0 inverted

now_int_state=3; /* now CoutO & Cout2 is high

outportb(wBase+5,3); /* enable INT_CHAN 0/1 interrupt

enable();

3

Y

/* Note : 1.The hold_time of INT_CHAN O & INT_CHAN_1 must long

/* enoug -

/* 2_.The ISR must read the interrupt status again to

/* identify the active interrupt source.

/* 3.The INT_CHAN O & INT_CHAN_ 1 can be active at the same

/* time.

)

void interrupt irg_service()

/* now ISR can not know which interrupt is active

new_int_state=inportb(wBase+7)&0x03; /* read all interrupt
/* signal state

int_c=new_int_state™now_int_state; /* compare new_state to

it ((int_c&0x01)==1)
Ef ((new_int_state&l)==0)

{
INTO_L++;
}

else

{
INTO H++:
b

invert=invert/Nl;

-

iT ((int_c&0x02)==2)

{
if ((new_int _state&2)==0)
{
INT1 L++;
}
else
{
INT1 H++;
}

invert=invert/"2;

now_int_state=new_int_state;
outportb(wBase+0x2a, invert);

if (wlrg>=8) outportb(A2_8259,0x20);

outportb(Al 8259,0x20);

/*
/*

/*

/*

/*

/*

/*

/*

/*
/*

/* old_state
INT_CHAN_O is active

INTO change to low now

INTO change to high now

generate high_pulse

INT_CHAN_1 is active

INT1 change to low now

INT1 change to high now

generate high_pulse

update interrupt status
generate a high pulse

*/
*/

*/
*/
*/
*/
*/
*/

*/

*/

*/

*/

*/

*/
*/

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 58

4.6 DEMOS

/* DEMO8 : D/A Output without calibration */
/* stepl : Run DEMO8.EXE */
S */

#include "P10_.H"

void pio_dal6é_da(int cChannel_no,int ival);
WORD wBase,wlrq;

int main()

int i,j,k;

WORD wBoards,wRetVal,tl,t2,t3,t4,t5,t6;
WORD wSubVendor ,wSubDevice,wSubAux,wSlotBus,wSlotDevice;

clrscr(Q);

/* stepl : find address-mapping of PI0/PISO cards */
/* step2 : énable all D/1/0 port */
outportb(wBase,0x11); /* /RESET -> 1 */

printfF(C"\n\n(2) A/D Output without calibration test');

printf("\n\n (a) 1.23V Voltage output to each channel™);
for (i=0; i<16; i++)

1.23*16383/20.0+8192;

j:
pio_dal6_da(i,j);

-

getch();
printf(""\n\n (b) 1.23mA Current output to each channel™);
for (i=0; i<16; i++)

J=1.23*8192/20+8191;
pio_dal6 da(i,j);
}

getch();

outportb(wBase+5,0); /* disable all interrupt */
outportb(wBase+3,0); /* all D/0 are Low */
outportb(wBase+2,0); /* all AUX as D/1 */
P10 _DriverClose();

3

/* __ */
void pio_dal6_da(int iChannel_no,int iVval)

{

ival=iVval+(iChannel_no%4)*0x4000; /* iChannel _no : 0 - 15 */
outportb(wBase+0xf0, ival); /* iVval - 0x0000 - Ox3fffF */

outportb(wBase+0xf4, (iVal>>8));
outportb(wBase+0xe0+4*(iChannel _no/4) ,0xff);
}

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 59

4.7 DEMO9

/* DEMO9 : D/A Output with calibration */
/* stepl : Run DEMO9.EXE */
S */

#include "P10_.H"

void pio_dal6_da(int cChannel_no,int ival);

WORD wBase,wlrq;

WORD wN10V[16],wP10V[16],wO0mA[16] ,w20mA[16],EEP;
float fDeltaVv[16],fDeltal[16];

int main()

int i,j.k;
WORD wBoards,wRetVal,tl,t2,t3,t4,t5,t6;
WORD wSubVendor ,wSubDevice,wSubAux,wSlotBus,wSlotDevice;

clrscr(Q);

/* stepl : find address-mapping of PIO/PI1SO cards */
/* step2 : énable all D/1/0 port */
outportb(wBase,0x11); /* /RESET -> 1 */
outportb(wBase+2,0x1c); /* AUX 4/3/2 are D/0, othes D/1 */
outportb(wBase+3,0); /* all D/0 are Low */

printf("\n\n(2) A/D Output with calibration test');
for (i=0; i<64;i++)

{

if (i<16)

{
EEP_READ(i ,&j ,&K):
WN1OV[i]=(j<<8)+k;

if ((i>=16)&&(i<32))

EEP_READ(i,&j,8&k);
wP10V[i-16]=(j<<8)+k;

if %(i>:32)&&(i<48))
{

EEP_READ(i,&),8&K);
wOOmA[1-32]=(J<<8)+k;

1
if (i>=48)

EEP_READ(i,&j,&k);
W20mA[i-48]=(j<<8)+k;
}

}
for (i=0; i<16; i++)

#DeltaV[i]:Z0-0/(wP10V[i]—wN10V[i
fDeltal[1]=20.0/(W20mALi]-wOOmA[#
}

printf(""\n\n () 1.23V Voltage output to each channel');
for (1=0; i<16; i++)

1:;
D

{
J=(1.23+10.0)/fDeltaV[i]+wN1OV[i];
pio_dal6 da(i,j);

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 60

}
getch();
printf(""\n\n (b) 1.23mA Current output to each channel™);
for (i=0; i<16; i++)

J=1.23/fDeltal[i]+wO0OmA[i];

pio_dal6_da(i,j);

}
getch(Q);
outportb(wBase+5,0); /* disable all interrupt */
outportb(wBase+3,0); /* all D/0 are Low */
outportb(wBase+2,0); /* all AUX as D/1 */
PI10_DriverClose();

}

P10-DA16/8/4 User’s Manual (Ver. 2.3, Feb/2007, PPH-010-23) ----- 61

	 1. INTRODUCTION
	1.1 Features
	1.2 Specifications
	1.3 Order Description
	Options

	1.4 PCI Data Acquisition Family
	1.5 Product Check List

	 2. Hardware configuration
	2.1 Board Layout
	2.2 Counter Architecture
	2.3 Interrupt Operation
	Interrupt Block Diagram
	INT_CHAN_0/1
	Initial_high, active_low Interrupt source
	Initial_low, active_high Interrupt source
	Multiple Interrupt Source

	2.4 D/I/O Block Diagram
	DI Port Architecture (CON2)
	DO Port Architecture (CON1)

	2.5 D/A Architecture
	2.6 D/A Convert Operation
	Output Range and Resolution
	±10V Voltage Output
	±5V Voltage Output
	0~10V Voltage Output
	0~5V Voltage Output
	0~20mA Current Output
	4~20mA Current Output
	No VR & No Jumper Design
	Factory Software Calibration
	Software Calibration
	Voltage Output Connection
	Current Output Connection

	2.7 The Connectors
	2.8 Daughter Boards
	DB-37
	DN-37
	DB-8125
	DB-16P Isolated Input Board
	DB-16R Relay Board
	DB-24PR, DB-24POR, DB-24C
	Daughter Board Comparison Table

	3. I/O Control Register
	3.1 How to Find the I/O Address
	PIO_DriverInit
	PIO_GetConfigAddressSpace
	Show_PIO_PISO

	3.2 The Assignment of I/O Address
	3.3 The I/O Address Map
	RESET\ Control Register
	AUX Control Register
	AUX data Register
	INT Mask Control Register
	Aux Status Register
	Interrupt Polarity Control Register
	Digital Input
	Digital Output
	Read/Write 8254
	D/A Select
	D/A Data Output

	4. Demo Program
	4.1 PIO_PISO
	PIO_PISO.EXE for Windows

	4.2 DEMO1
	4.3 DEMO2
	4.4 DEMO3
	4.5 DEMO5
	4.6 DEMO8
	4.7 DEMO9

