SANEZOO Grasp for 3D picking & feeding 3D system for any components Adaptive AI & machine vision Calculates full robot trajectory Easily copes with reflective parts Integrates easily in one day One size fits all ## Fits any compoment Works like a pair of eyes. No need for projectors or lasers. Perfect for metal, machined, glossy or matte parts and scenes with multiple different materials in the field of view. - ✓ GRASP is universal for all parts - of any size from 5mm up, - with geometric or complex shapes - ✓ Can handle a wide range of part surfaces, including: ## Automatically calculates full trajectories - creates end-to-end trajectories on-the-fly - can guide from a final position directly inside the box - knows the gripping position -> oriented placing ### Avoids obstacles and collisions Universal for containers of any size. From small totes to mesh box pallets Can handle also very small parts in large containers ## Large depth of field ### Can be static or robot mounted ### Advantages when mounted on a robot - → less fewer obstructions and occlusions - → more accurate acquisition and picking - → no need for vibration-free frames and holders - → can pick from large or multiple containers - → unlimited depth of field, handles deep boxes ### **ALWAYS** in focus The SANEZOO system can also pick accurately from the top as well as the bottom of very deep containers. The images stay in perfect focus thanks to the constant working distance. 4 ### Comparison of 3D Input Technologies # Consistently reliable across all lighting environments from complete darkness to direct sunlight Unaffected by the variability of lighting conditions, ensuring stability day and night, even in extreme brightness or darkness. # (i) (ii) (iii) (ii ### Detailed and accurate 3D reconstruction #### Even on very reflective parts A 3D point cloud is a collection of points in three-dimensional space that represents the whole scene. Each marked point is assigned three coordinates (x, y, and z) based on its position in the 3D space. These points collectively form a cloud-like representation of the object or scene, where each point in the cloud corresponds to a specific location 6 7 ### SANEZOO STUDIO ## Fast integration - The length of integration (including unboxing, installation and application setup): 1-4 hours. - The integration includes the following steps: - A Installation of the 3D camera and flange adapter - B Calibration of the 3D camera - C Uploading SANEZOO library to a robotic controller - D Integration setup steps: - I. CAD model or simplified CAD model upload of a part and a box - II. Selection of a robot (or definition of a new robot) - III. Selection of a gripper - IV. Upload of a model of fingers - V. Scene definition or upload of the robotic cell - VI. Definition of gripping points on the part - VII. Definition of placement points - VIII. Definition of signals for PLC integration ### Typical use cases - picking parts for production lines and conveyors - machine loading and unloading - part inspection and sorting - laser marking - kitting and assembly - custom packaging #### Industries ### Supports any robot manufacturer SANEZOO offers universal interface for integration with any robot controller. New robot controller can be added in less than two weeks. Open and documented API for third-party, adaptation can be performed by anyone. #### AND MANY MORE